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Comparing several means 

Self-test answers 

 

• To illustrate exactly what is going on I have created a file called 
dummy.dat. This file contains the Viagra data but with two additional 
variables (dummy1 and dummy2) that specify to which group a data 
point belongs (as in Table 10.2). Access this file and run multiple 
regression analysis using libido as the outcome and dummy1 and 
dummy2 as the predictors. 

To read in the data, set your working directory to the location of the file and execute: 

dummyData<-read.delim("Dummy.dat", header = TRUE) 

We need to turn the dose variable into a factor because it is categorical. It is coded as 
Placebo = 1, Low Dose = 2, and High Dose  = 3. Therefore, we can change dose to a factor 
as follows: 

dummyData$dose<-factor(dummyData$dose, levels = c(1:3), labels = c("Placebo", "Low 
Dose", "High Dose")) 

To create the regression model (dummy.model) and to print the summary of it, we execute:  

dummy.model<-lm(libido~dummy1 + dummy2, data = dummyData) 

summary(dummy.model) 

 

• To illustrate these principles, I have created a file called Contrast.dat in 
which the Viagra data are coded using the contrast coding scheme used 
in this section. Run multiple regression analyses on these data using 
libido as the outcome and using dummy1 and dummy2 as the predictor 
variables (leave all default options).  

To read in the data, set your working directory to the location of the file and execute: 

contrastData<-read.delim("Contrast.dat", header = TRUE) 

We need to turn the dose variable into a factor because it is categorical. It is coded as 
Placebo = 1, Low Dose = 2, and High Dose  = 3. Therefore, we can change dose to a factor 
as follows: 

contrastData$dose<-factor(contrastData$dose, levels = c(1:3), labels = c("Placebo", 
"Low Dose", "High Dose")) 

To create the regression model (contrast.model) and to print the summary of it, we execute:  

contrast.model<-lm(libido~dummy1 + dummy2, data = contrastData) 

summary(contrast.model) 
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• Use ggplot2 to produce a line chart with error bars showing bootstrapped 
confidence intervals for the Viagra data. 

The image in the book was generated from this code: 

line <- ggplot(viagraData, aes(dose, libido)) 

line + stat_summary(fun.y = mean, geom = "line", size = 1, aes(group=1), colour = 
"#FF6633") + stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2, 
size = 0.75, colour = "#990000") + stat_summary(fun.y = mean, geom = "point", size = 
4, colour = "#990000") + stat_summary(fun.y = mean, geom = "point", size = 3, colour = 
"#FF6633") + labs(x = "Dose of Viagra", y = "Mean Libido") 

 

• Repeat the analysis with 10% trimmed means. How do your conclusions 
differ? 

To use 10% trimmed means we would change the command to be (note tr = .1, which gives 
us 10% trim rather than the default of tr = .2, which trims 20%): 

lincon(viagraWide, tr = .1) 

The output is: 
[1] "Note: confidence intervals are adjusted to control FWE" 
[1] "But p-values are not adjusted to control FWE" 
$test 
     Group Group     test     crit        se       df 
[1,]     1     2 1.212678 2.960000 0.8246211 8.000000 
[2,]     1     3 3.055050 2.985397 0.9165151 7.719912 
[3,]     2     3 1.963961 2.985397 0.9165151 7.719912 
 
$psihat 
     Group Group psihat  ci.lower    ci.upper    p.value 
[1,]     1     2   -1.0 -3.440879  1.44087853 0.25984505 
[2,]     1     3   -2.8 -5.536161 -0.06383861 0.01638290 
[3,]     2     3   -1.8 -4.536161  0.93616139 0.08644456 
 
The confidence interval for the difference between groups 1 and 3 (i.e. placebo and high 
dose) no longer crosses zero, which implies a significant difference in libido between these 
two groups. This mirrors the results from the non-robust post hoc tests in the chapter but is 
different from when we used a 20% trim on the data. 

Oliver Twisted 

Please Sir, can I have some more … Levene’s test? 

 
Levene’s test is basically an ANOVA conducted on the absolute differences 
between the observed data and the median or mean from which the data 
came. To see what I mean, let’s do a sort of manual Levene’s test on the 
Viagra data. First, create the dose and libido variables and put them in a 
dataframe: 

libido<-c(3,2,1,1,4,5,2,4,2,3,7,4,5,3,6) 

dose<-c(rep(1,5),rep(2,5), rep(3,5)) 

dose<-factor(dose, levels = c(1:3), labels = c("Placebo", "Low Dose", "High Dose")) 

viagraData<-data.frame(libido, dose) 

The data look like this: 
       dose libido 
1    Placebo      3 
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2    Placebo      2 
3    Placebo      1 
4    Placebo      1 
5    Placebo      4 
6   Low Dose      5 
7   Low Dose      2 
8   Low Dose      4 
9   Low Dose      2 
10  Low Dose      3 
11 High Dose      7 
12 High Dose      4 
13 High Dose      5 
14 High Dose      3 
15 High Dose      6 

 
We now want to add a variable containing the medians for each group. We can get the 
medians from: 

by(viagraData$libido, viagraData$dose, summary) 
viagraData$dose: Placebo 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    1.0     1.0     2.0     2.2     3.0     4.0  
--------------------------------------------------------------------------------------
--------------------  
viagraData$dose: Low Dose 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    2.0     2.0     3.0     3.2     4.0     5.0  
--------------------------------------------------------------------------------------
--------------------  
viagraData$dose: High Dose 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
      3       4       5       5       6       7 
 
The medians for the placebo, low-dose and high-dose groups were 2, 3 and 5, respectively; 
we can add this variable to the dataframe by executing: 

viagraData$median<-c(rep(2,5),rep(3,5), rep(5,5)) 

The data now look like this: 
 
        dose libido median 
1    Placebo      3      2 
2    Placebo      2      2 
3    Placebo      1      2 
4    Placebo      1      2 
5    Placebo      4      2 
6   Low Dose      5      3 
7   Low Dose      2      3 
8   Low Dose      4      3 
9   Low Dose      2      3 
10  Low Dose      3      3 
11 High Dose      7      5 
12 High Dose      4      5 
13 High Dose      5      5 
14 High Dose      3      5 
15 High Dose      6      5 
 
We need to create a new variable called difference (short for ‘difference from group 
median’), which is each score subtracted from the median of the group to which that score 
belongs. In other words, we simply subtract the variable libido from the variable median. 

viagraData$difference = viagraData$libido-viagraData$median 

The data now look like this: 
 
        dose libido median difference 
1    Placebo      3      2          1 
2    Placebo      2      2          0 
3    Placebo      1      2         -1 
4    Placebo      1      2         -1 
5    Placebo      4      2          2 
6   Low Dose      5      3          2 
7   Low Dose      2      3         -1 
8   Low Dose      4      3          1 
9   Low Dose      2      3         -1 
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10  Low Dose      3      3          0 
11 High Dose      7      5          2 
12 High Dose      4      5         -1 
13 High Dose      5      5          0 
14 High Dose      3      5         -2 
15 High Dose      6      5          1 

 
Note that for person 1, the difference score is 3 – 2 = 1, for person 2 it is 2 – 2 = 0. As we 
move into the low-dose group we subtract the median of that group, so person 6’s difference 
is 5 – 3 = 2, person 7 is 2 – 3 = −1. In the high-dose group, the group median is 5, so for 
person 11 we get a difference of 7 – 5 = 2 and so on. 

Think about what these differences are: they are deviations from the median. They 
represent variation from the median. When we compute the variance we square the values to 
get rid of the plus and minus signs (otherwise the positive and negative deviations will cancel 
out). Levene’s test doesn’t do this (because we don’t want to change the units of 
measurement by squaring the values), but instead simply takes the absolute values; that is, it 
pretends that all of the deviations are positive. 

We can get the absolute values of these differences (i.e. we need to make them all positive 
values), by creating a new variable (called abs.diff) and applying the abs() function to the 
difference variable: 

viagraData$abs.diff = abs(viagraData$difference) 

The data now look like this:  
        dose libido median difference abs.diff 
1    Placebo      3      2          1        1 
2    Placebo      2      2          0        0 
3    Placebo      1      2         -1        1 
4    Placebo      1      2         -1        1 
5    Placebo      4      2          2        2 
6   Low Dose      5      3          2        2 
7   Low Dose      2      3         -1        1 
8   Low Dose      4      3          1        1 
9   Low Dose      2      3         -1        1 
10  Low Dose      3      3          0        0 
11 High Dose      7      5          2        2 
12 High Dose      4      5         -1        1 
13 High Dose      5      5          0        0 
14 High Dose      3      5         -2        2 
15 High Dose      6      5          1        1 
 
Note that the abs.diff scores are the same magnitude as the scores in difference, it’s just 
that the minus signs have gone. These values still represent deviations from the mean, or 
variance, we just now don’t have the problem of positive and negative deviations cancelling 
each other out. 

Now, using what you learnt in the book, conduct a one-way ANOVA on these difference 
scores: dose is the independent variable and diff is the dependent variable. Call the resulting 
model levenes. 

Your command should look like this: 

levenes<-aov(abs.diff~dose, data = viagraData) 

Get the summary data by executing: 

summary(levenes) 

You’ll find that the F-ratio for this analysis is 0.118, which is very non-significant at p = 0.89; 
that is, the same values as Levene’s test in the book! 
 
            Df Sum Sq Mean Sq F value Pr(>F) 
dose         2 0.1333 0.06667  0.1176   0.89 
Residuals   12 6.8000 0.56667                
 
Levene’s test is, therefore, testing whether the ‘average’ absolute deviation from the median 
is the same in the three groups. Clever, eh? 

Programs like SPSS use the deviation from the mean rather than the median (which is a 
less good measure). The group means were 2.2, 3.2 and 5. If you want to see the same 
process that we have just examined but using the means you can adapt the code as follows: 
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viagraData$mean<-c(rep(2.2,5),rep(3.2,5), rep(5,5)) 

viagraData$difference = viagraData$libido-viagraData$mean 

viagraData$abs.diff = abs(viagraData$difference) 

levenes<-aov(abs.diff~dose, data = viagraData) 

summary(levenes) 

You’ll find that the F-ratio for this analysis is 0.092, which is again non-significant at p = .913. 
 
            Df Sum Sq Mean Sq F value Pr(>F) 
dose         2 0.0853 0.04267  0.0917  0.913 
Residuals   12 5.5840 0.46533    

Please Sir, can I have some more … Welch’s F? 

The Welch (1951) F-ratio is somewhat complicated (which is why it’s stuck on 
the website). First we have to work out a weight that is based on the sample 
size, nk, and variance, ,  for a particular group: 

 
We also need to use a grand mean based on a weighted mean for each group. So we take 
the mean of each group, , and multiply it by its weight, wk, do this for each group and add 
them up, then divide this total by the sum of weights: 

 
The easiest way to do this is in table form: 

Group Variance 
s2 

Sample size, 
nk 

Weight 
wk 

Mean 
  

Placebo 1.70 5 2.941 2.2 6.4702 
Low Dose 1.70 5 2.941 3.2 9.4112 
High Dose 2.50 5 2.000 5.0 10.000 
   Σ = 7.882  Σ = 25.8814 

So, we get: 

 
Think back, to equation (8.5), the model sum of squares was: 

 
In Welch’s F this is adjusted to incorporate the weighting and the adjusted grand mean: 

 
And to create a mean squares we divide by the degrees of freedom, k – 1: 
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We now have to work out a term called lambda, which is based again on the weights: 

 
This looks horrendous, but is just based on the sample size in each group, the weight for 
each group (and the sum of all weights), and the total number of groups, K. For the Viagra 
data this gives us: 

  
The F ratio is then given by: 

 
So, for the Viagra data we get: 

 

  

The model degrees of freedom stay the same at K–1 (in this case 2), but the residual degrees 
of freedom, dfR, are 1/Λ (in this case, 1/0.126 = 7.94). 

Oliver Twisted 

Please Sir, can I have some more … omega? 

If you don’t want to compute omega squared by hand, you could easily write 
yourself a function that describes the equation in the book. The reason why 
writing a function is a good idea is because once you have executed the 
function once, you can use it over and over again within your current R 
session. This saves you having to write out the equation every time you want 
to compute omega squared. 

If you access the GLM1.R file from the companion website you will see that I 
have written the function or you. The function looks like this: 

omega<-function(SSm, SSr, dfm, MSr) 

{ 

 SSt = SSm + SSr 

 omega = (SSm-(dfm*MSr))/(SSt+MSr) 

 print(paste("Omega-Squared: ", omega)) 

} 
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We’ll try to break this down into its constituent parts: 
• omega: This is the name I have given to the function. If we want to use it in the 

future, we therefore would type omega() just like we do with built-in functions. 
• function(SSm, SSr, dfm, MSr): This defines what values are input to the function. To 

calculate omega squared we need to know four things: the model sum of squares 
(SSM), the residual sum of squares (SSR) so that we can calculate the total sum of 
squares, the model degrees of freedom, and the residual mean squares model sum 
of squares (MSR). When we use the function we will have to input these four values. 
For example, to calculate omega squared for the example in the book we would 
simply execute omega(20.133, 23.600, 2, 1.9667), which will feed the four values 
we have listed into the function omega(), which we’re about to define. 

• {}: Anything between these brackets is the function itself. It contains a list of 
instructions that tell R what to do. 

• SSt = SSm + SSr: The first instruction is to create an object called SSt, which is 
simply the total sum of squares, which is calculated by adding together the model 
and residual sums of squares (which we entered into the function). 

• omega = (SSm-(dfm*MSr))/(SSt+MSr): This creates an object, omega, which is the 
value of omega squared. Notice that this is simply the equation for omega squared 
from the book. It will take the values entered into the function and place them into 
this equation. 

• print(paste("Omega-Squared: ", omega)): This command prints omega (the value of 
omega squared). To make the output nicer we use the paste() command to ‘paste’ 
together a text string explaining what the statistic is, and the value of the statistic 
itself. 

Once you have executed the above function you can compute omega squared by referring 
to omega() (remembering to include the necessary information for SSm, SSr, dfm, and MSr). 
For example, to compute omega-squared for the Viagra example (see the book chapter), we 
would execute: 

omega(20.133, 23.600, 2, 1.9667)  

The output will look like this: 
 
[1] "Omega-Squared:  0.35447935106795" 

 
This value matches that computed in the chapter. 

Labcoat Leni’s real research 

Scraping the barrel? 

Problem 
Gallup, G. G. J., et al. (2003). Evolution and Human Behavior, 24, 277–289. 

 
Evolution has endowed us with many beautiful things (cats, dolphins, the 
Great Barrier Reef, etc.), all selected to fit their ecological niche. Given 
evolution’s seemingly limitless capacity to produce beauty, it’s something of 

a wonder how it managed to produce such a monstrosity as the human 
penis. One theory is that the penis evolved into the shape that it is 
because of sperm competition. Specifically, the human penis has an 
unusually large glans (the ‘bell end’ as it’s affectionately known) compared 
to other primates, and this may have evolved so that the penis can 

displace seminal fluid from other males by ‘scooping it out’ during 
intercourse. To put this idea to the test, Gordon Gallup and his colleagues came up with an 
ingenious study (Gallup et al., 2003). Armed with various female masturbatory devices from 
Hollywood Exotic Novelties, an artificial vagina from California Exotic Novelties, and some 
water and cornstarch to make fake sperm, they loaded the artificial vagina with 2.6 ml of fake 
sperm and inserted one of three female sex toys into it before withdrawing it. Over several 
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trials, three different female sex toys were used: a control phallus that had no coronal ridge 
(i.e. no bell end), a phallus with a minimal coronal ridge (small bell end) and a phallus with a 
coronal ridge. 

They measured sperm displacement as a percentage using the following equation (included 
here because it is more interesting than all of the other equations in this book): 
 

 

 
As such, 100% means that all of the sperm was displaced by the phallus, and 0% means 

that none of the sperm was displaced. If the human penis evolved as a sperm displacement 
device then Gallup et al. predicted: (1) that having a bell end would displace more sperm than 
not; and (2) the phallus with the larger coronal ridge would displace more sperm than the 
phallus with the minimal coronal ridge. The conditions are ordered (no ridge, minimal ridge, 
normal ridge) so we might also predict a linear trend. The data can be found in the file Gallup 
et al.csv. Draw an error bar graph of the means of the three conditions. Conduct a one-way 
ANOVA with planned comparisons to test the two hypotheses above. What did Gallup et al. 
find? 

Solution 
First, load the file Gallup et al.csv from the companion website into a dataframe called 
GallupData by executing (assuming you have set your working directory to be where the file 
is located): 
 
GallupData = read.csv("Gallup et al.csv", header = TRUE) 
 

Let’s do the graph first. There are two variables in the data editor: Phallus (the independent 
variable, with three levels: no ridge, minimal ridge and normal ridge) and Displacement (the 
dependent variable, the percentage of sperm displaced). The graph should therefore plot 
Phallus on the x-axis and Displacement on the y-axis. 

If you have not already done so, you need to install the ggplot2 package: 
 
install.packages("ggplot2") 
 

Even if you have previously installed the ggplot2 package, you will still need to activate it by 
excecuting: 
 
library(ggplot2) 
 
To plot a categorical variable in ggplot2 it needs to be recognized as a factor. The 

categorical variable Phallus in the current data set is already recognized as a factor, so we 
are ready to plot the graph.  
 
As always we first create the plot object and define the variables that we want to plot as 
aesthetics:  

 
bar <- ggplot(GallupData, aes(Phallus, Displacement)) 
 
We can then create an error bar graph by executing the following command: 

 
bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Phallus 
Type", y = "Mean Semen Displacement (%)") 
 
The final graph looks like this: 
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This graph shows that having a coronal ridge results in more sperm displacement than not 
having one. The size of ridge made very little difference. 

Before we get the ANOVA itself we need to compute the Levene’s test to see whether the 
variance in percentage semen displacement (the outcome) varies across different phallus 
types: 

 

leveneTest(GallupData$Displacement, GallupData$Phallus, center = "median") 
Levene's Test for Homogeneity of Variance (center = "median") 
      Df F value Pr(>F) 
group  2  1.1516 0.3487 
      12                
 
The output tells us that Levene’s test is not significant, F(2, 12) = 1.15, p = .35, so we can 
assume that variances are equal. 

To run the one-way ANOVA we can execute the following command: 
 
GallupModel<-aov(Displacement~Phallus, data = GallupData) 
 
Summary(GallupModel) 
 

          Df  Sum Sq   Mean Sq   F value    Pr(>F)     
Phallus   2   10397.7 5198.8    41.559    4.032e-06 *** 
Residuals 12  1501.1  125.1                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
We can conduct a trend analysis by executing: 
 
contrasts(GallupData$Phallus)<-contr.poly(3) 
 
The ‘3’ just tells contr.poly() how many groups there are in the predictor variable. Having set 
the contrast, we can create a new model using aov(), by executing: 
 
GallupTrend<-aov(Displacement~Phallus, data = GallupData) 
 
To access the contrasts we need the model parameters, which are obtained by executing: 
 
summary.lm(GallupTrend) 
 
Call: 
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aov(formula = Displacement ~ Phallus, data = GallupData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-13.8276  -7.3288   0.1826   4.1917  26.4298  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   72.549      2.888  25.122 9.60e-12 *** 
Phallus.L     39.532      5.002   7.904 4.26e-06 *** 
Phallus.Q    -22.731      5.002  -4.545 0.000672 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 11.18 on 12 degrees of freedom 
Multiple R-squared: 0.8738, Adjusted R-squared: 0.8528  
F-statistic: 41.56 on 2 and 12 DF, p-value: 4.032e-06  
 
 

The main ANOVA tells us that there was a significant effect of the type of phallus, F(2, 12) = 
41.56, p < .001. (This is exactly the same result as reported in the paper on page 280.) The is 
a significant linear trend, t(12) = 7.90, p < .001, indicating that more sperm was displaced as 
the ridge increased (however, note from the graph that this effect reflects the increase in 
displacement as we go from no ridge to having a ridge; there is no extra increase from 
‘minimal ridge’ to ‘coronal ridge’). There is also a significant quadratic trend, indicating that 
the pattern of means is curvilinear (i.e., is represented by a curve that has one bend), t(12) = 
−4.55, p < .001. This suggests that having a coronal ridge compared to having no coronal 
ridge enhances semen displacement but then as the coronal ridge increases beyond a certain 
point the percentage semen displacement decreases again. This makes sense when looking 
at the error bar graph, there was very little difference between ‘minimal coronal ridge’ and 
‘coronal ridge’.  

To test our hypotheses we need to conduct some planned comparisons. To do this we need 
to tell R what weights to assign to each group: 
 

 Group 
 No Ridge (Control) Minimal Ridge Coronal Ridge 

Contrast 1 −2 1 1 
Contrast 2 0 −1 1 

 
Contrast 1 tests hypothesis 1: (1) that having a bell end will displace more sperm than not. To 
test this we compare the two conditions with a ridge against the control condition (no ridge). 
So we compare chunk 1 (no ridge) to chunk 2 (minimal ridge, coronal ridge). The numbers 
assigned to the groups are the numbers of groups in the opposite chunk, and then we 
randomly assign one chunk to be a negative value (the codes 2 −1 −1 would work fine as 
well). 

Contrast 2 tests hypothesis 2: (2) the phallus with the larger coronal ridge will displace more 
sperm than the phallus with the minimal coronal ridge. First we get rid of the control phallus 
by assigning a code of 0; next we compare chunk 1 (minimal ridge) to chunk 2 (coronal 
ridge). The numbers assigned to the groups are the numbers of groups in the opposite chunk, 
and then we randomly assigned one chunk to be a negative value (the codes 0 1 −1 would 
work fine as well). 

To conduct these planned comparisons, we can execute the following commands: 
 
contrast1<-c(-2,1,1) 
 
contrast2<-c(0,-1,1) 

 
Having created these contrast variables we now need to bind them together using cbind(): 
 

contrasts(GallupData$Phallus)<-cbind(contrast1, contrast2) 

This command sets the contrast property of Phallus to contain the weights for the two 
contrasts that we want to conduct. If you have a look at the Phallus variable by executing: 

 
GallupData$Phallus 
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contrast1 contrast2 

No Coronal Ridge             -2         0 
Minimal Coronal Ridge         1        -1 
Coronal Ridge                 1         1 
Levels: No Coronal Ridge Minimal Coronal Ridge Coronal Ridge 
 
This output tells us that we entered our weights correctly. 

Once we have set the contrast attribute we create a new model using aov(), by executing:  
 
gallupPlanned<-aov(Displacement~Phallus, data = GallupData) 
 
summary.lm(gallupPlanned) 
 

Call: 
aov(formula = Displacement ~ Phallus, data = GallupData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-13.8276  -7.3288   0.1826   4.1917  26.4298  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)      72.54891    2.88784  25.122 9.60e-12 *** 
Phalluscontrast1 18.61686    2.04201   9.117 9.63e-07 *** 
Phalluscontrast2  0.05679    3.53686   0.016    0.987     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 11.18 on 12 degrees of freedom 
Multiple R-squared: 0.8738, Adjusted R-squared: 0.8528  
F-statistic: 41.56 on 2 and 12 DF, p-value: 4.032e-06  
 

Contrast 1 tells us that hypothesis 1 is supported: having some kind of ridge led to greater 
sperm displacement than not having a ridge, t(12) = 9.12, p < .001. Contrast 2 shows that 
hypothesis 2 is not supported: the amount of sperm displaced by the normal coronal ridge 
was not significantly different from the amount displaced by a minimal coronal ridge, t(12) = 
0.02, p = .99.  
 

Smart Alex’s solutions 

Task 1 

• Imagine that I was interested in how different teaching methods affected students’ 
knowledge. I noticed that some lecturers were aloof and arrogant in their teaching 
style and humiliated anyone who asked them a question, while others were 
encouraging and supportive of questions and comments. I took three statistics 
courses where I taught the same material. For one group of students I wandered 
around with a large cane and beat anyone who asked daft questions or got questions 
wrong (punish). In the second group I used my normal teaching style, which is to 
encourage students to discuss things that they find difficult and to give anyone 
working hard a nice sweet (reward). The final group I remained indifferent to and 
neither punished nor rewarded their efforts (indifferent). As the dependent measure I 
took the students’ exam marks (percentage). Based on theories of operant 
conditioning, we expect punishment to be a very unsuccessful way of reinforcing 
learning, but we expect reward to be very successful. Therefore, one prediction is 
that reward will produce the best learning. A second hypothesis is that punishment 
should actually retard learning such that it is worse than an indifferent approach to 
learning. The data are in the file Teach.dat. Carry out a one-way ANOVA and use 
planned comparisons to test the hypotheses that: (1) reward results in better exam 
results than either punishment or indifference; and (2) indifference will lead to 
significantly better exam results than punishment. 
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First, load the Teach.dat data: 
 
teachData = read.delim("Teach.dat", header = TRUE) 

 
To get some descriptive statistics for each group we can use the by() function: 

 
by(teachData$exam, teachData$group, stat.desc) 
 

 
teachData$group: 1 (Punish) 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
 10.00000000   0.00000000   0.00000000  45.00000000  57.00000000  12.00000000 500.00000000  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
 49.50000000  50.00000000   1.30809446   2.95911525  17.11111111   4.13655788   0.08273116  
--------------------------------------------------------------------  
teachData$group: 2 (Indifferent) 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  10.0000000    0.0000000    0.0000000   46.0000000   67.0000000   21.0000000  560.0000000  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
  54.5000000   56.0000000    2.2459841    5.0807690   50.4444444    7.1024253    0.1268290  
--------------------------------------------------------------------  
teachData$group: 3 (Reward) 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
 10.00000000   0.00000000   0.00000000  58.00000000  71.00000000  13.00000000 654.00000000  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
 66.00000000  65.40000000   1.35973854   3.07594227  18.48888889   4.29987080   0.06574726  

 
This output shows a table of descriptive statistics; we’re told the means, standard deviations 
and standard errors of the means for each experimental condition. These diagnostics are 
important for interpretation later on. It looks as though marks are highest after reward and 
lowest after punishment. 

We need to set the categorical variable group to be a factor: 
 

teachData$group<-factor(teachData$group, levels = c(1:3), labels = 
c("Punish","Indifferent", "Reward")) 
 
We can then conduct Levene's test: 
 
leveneTest(teachData$exam, teachData$group, center = "median") 

 
Levene's Test for Homogeneity of Variance (center = "median") 
      Df  F value   Pr(>F) 
group  2  1.7343   0.1956 
      27            
For these data, the assumption of homogeneity of variance has been met, because our 
significance is .20, which is bigger than the criterion of .05.  

Next, we can run the one-way ANOVA by executing: 
 

teachModel<-aov(exam~group, data = teachData) 
 
summary(teachModel) 
 
          Df  Sum Sq  Mean Sq  F value    Pr(>F)     
group      2  1205.1  602.53   21.008   3.145e-06 *** 
Residuals 27   774.4   28.68                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
In the ANOVA output above, the observed significance value is less than .05 and so we can 
say that there was a significant effect of teaching style on exam marks. However, at this stage 
we still do not know exactly what the effect of the teaching style was (we don’t know which 
groups differed).  

Because there were specific hypotheses, we can specify some contrasts. In the data set, the 
codes for the categorical variable group were set as: Punish = 1, Indifferent = 2 and Reward 
= 3.  
 
contrast1<-c(1,1,-2) 
contrast2<-c(1,-1,0) 
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contrasts(teachData$group)<-cbind(contrast1, contrast2) 

teachData$group 
 
 
            contrast1 contrast2 
Punish              1         1 
Indifferent         1        -1 
Reward             -2         0 
Levels: Punish Indifferent Reward 
 
The above output shows the codes I used. The first contrast compares reward (coded with 
−2) against punishment and indifference (both coded with 1). The second contrast compares 
punishment (coded with 1) against indifference (coded with −1). Note that the codes for each 
contrast sum to zero, and that in contrast 2, reward has been coded with a 0 because it is 
excluded from that contrast.  

 
teachPlanned<-aov(exam~group, data = teachData) 
 
summary.lm(teachPlanned) 
 

Call: 
aov(formula = exam ~ group, data = teachData) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
 -10.0   -3.3   -0.7    3.9   11.0  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     57.1333     0.9778  58.432  < 2e-16 *** 
groupcontrast1  -4.1333     0.6914  -5.978 2.24e-06 *** 
groupcontrast2  -3.0000     1.1975  -2.505   0.0186 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 5.356 on 27 degrees of freedom 
Multiple R-squared: 0.6088, Adjusted R-squared: 0.5798  
F-statistic: 21.01 on 2 and 27 DF, p-value: 3.145e-06 
 

The output above shows the significance of the two contrasts specified. The t-test for the 
first contrast tells us that reward was significantly different from punishment and indifference 
(it’s significantly different because the value in the column labelled Pr(>|t|) is less than .05). 
Looking at the means, this tells us that the average mark after reward was significantly higher 
than the average mark for punishment and indifference combined. The second contrast 
(together with the descriptive statistics) tells us that the marks after punishment were 
significantly lower than after indifference (again, it’s significantly different because the value in 
the column labelled Pr(>|t|). is less than .05). As such we could conclude that reward 
produces significantly better exam grades than punishment and indifference, and that 
punishment produces significantly worse exam marks than indifference. So lecturers should 
reward their students, not punish them! 

 
Calculating the effect size 
The output from the ANOVA above provides us with three measures of variance: the 
between-group effect (SSM), the within-subject effect (MSR) and the total amount of variance 
in the data (SST; remember that SST = SSM + SSR). We can use these to calculate omega 
squared (ω2): 

𝜔2=SSM−𝑑𝑓M×MSRSST+𝑀𝑆𝑅
 

 

𝜔2=1205.1−2×28.681979.5+28.68 
      =1147.742008.18 

=.57 
𝜔=.76 

For the contrasts (look at the contrasts output to find these numbers) the effect sizes will be: 
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If you think back to our benchmarks for effect sizes this represents a huge effect (it is well 
above .5, the threshold for a large effect). Therefore, as well as being statistically significant, 
this effect is large and so represents a substantive finding. For contrast 2 we get: 

 

This too is a substantive finding and represents a medium to large effect size. 
 

Interpreting and writing the result 
The correct way to report the main finding would be: 

 All significant values are reported at p < .05.There was a significant effect of teaching 
style on exam marks, F(2, 27) = 21.01, ω2 = .57. Planned contrasts revealed that 
reward produced significantly better exam grades than punishment and indifference, 
t(27) = –5.98, r = .75, and that punishment produced significantly worse exam marks 
than indifference, t(27) = −2.51, r = .43.  

 

Task 2 

• Earlier in this chapter we encountered some data relating to children’s injuries while 
wearing superhero costumes. Children reporting to the emergency centre at hospitals 
had the severity of their injury (injury) assessed (on a scale from 0, no injury, to 100, 
death). In addition, a note was taken of which superhero costume they were wearing 
(hero): Spiderman, Superman, the Hulk or a Teenage Mutant Ninja Turtle. Use one-
way ANOVA and multiple comparisons to test the hypotheses that different costumes 
are associated with more severe injuries.  

First load in the Superhero.dat data: 
 
superData = read.delim("Superhero.dat", header = TRUE) 
 

 
Set the categorical variable hero to be a factor: 
 
superData$hero<-factor(superData$hero, levels = c(1:4), labels = 
c("Spiderman","Superman", "Hulk", "Ninja Turtle")) 
 
We can get some descriptive statistics: 
 
by(superData$injury, superData$hero, stat.desc) 
 
superData$hero: Spiderman 
     nbr.val     nbr.null       nbr.na          min          max  
   8.0000000    0.0000000    0.0000000   20.0000000   58.0000000  
       range          sum       median         mean      SE.mean  
  38.0000000  333.0000000   43.5000000   41.6250000    4.3174790  
CI.mean.0.95          var      std.dev     coef.var  
  10.2092156  149.1250000   12.2116747    0.2933736  
-----------------------------------------------------  
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superData$hero: Superman 
     nbr.val     nbr.null       nbr.na          min          max  
   6.0000000    0.0000000    0.0000000   32.0000000   85.0000000  
       range          sum       median         mean      SE.mean  
  53.0000000  362.0000000   62.0000000   60.3333333    7.2877370  
CI.mean.0.95          var      std.dev     coef.var  
  18.7337244  318.6666667   17.8512371    0.2958769  
-----------------------------------------------------  
superData$hero: Hulk 
     nbr.val     nbr.null       nbr.na          min          max  
   8.0000000    0.0000000    0.0000000   10.0000000   53.0000000  
       range          sum       median         mean      SE.mean  
  43.0000000  283.0000000   38.0000000   35.3750000    4.7318733  
CI.mean.0.95          var      std.dev     coef.var  
  11.1891024  179.1250000   13.3837588    0.3783395  
-----------------------------------------------------  
superData$hero: Ninja Turtle 
     nbr.val     nbr.null       nbr.na          min          max  
   8.0000000    0.0000000    0.0000000   18.0000000   41.0000000  
       range          sum       median         mean      SE.mean  
  23.0000000  210.0000000   27.5000000   26.2500000    2.8831406  
CI.mean.0.95          var      std.dev     coef.var  
   6.8175443   66.5000000    8.1547532    0.3106573  

 
Looking at the means in the output above, it seems that children wearing a Ninja Turtle 

costume had the least severe injuries, whereas children wearing a Superman costume had 
the most severe injuries. The error bar graph below also shows this pattern. 

 
bar <- ggplot(superData, aes(hero, injury)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Superhero 
Costume", y = "Mean Severity of Injury") 

 
 

 
 
Before we conduct the ANOVA, we need to conduct Levene's test: 

 
leveneTest(superData$injury, superData$hero, center = "median") 

 
 Levene's Test for Homogeneity of Variance (center = "median") 
      Df   F value  Pr(>F) 
group  3   0.827    0.491 
      26          
For these data, the assumption of homogeneity of variance has been met, because our 
significance is .49, which is much bigger than the criterion of .05.  
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We can now run the ANOVA: 

 
superModel<-aov(injury~hero, data = superData) 
 
summary(superModel) 
 
                Df Sum Sq    Mean Sq   F value    Pr(>F)     
Hero            3   4180.6   1393.54    8.3166   0.0004828 *** 
Residuals      26   4356.6    167.56                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

In the ANOVA output above, the observed significance value is less than .05 and so we can 
say that there was a significant effect of superhero costume on injury severity. However, at 
this stage we still do not know exactly what the effect of superhero costume was (we don’t 
know which groups differed).  

Because there were no specific hypotheses, only that the groups would differ, we can’t look 
at planned contrasts but we can conduct some post hoc tests. I am going to conduct a 
Benjamini–Hochberg (BH) test by executing: 
 
pairwise.t.test(superData$injury, superData$hero, p.adjust.method = "BH") 
 

Pairwise comparisons using t tests with pooled SD  
 
data:  superData$injury and superData$hero  
 
             Spiderman Superman Hulk    
Superman     0.02544   -        -       
Hulk         0.34311   0.00426  -       
Ninja Turtle 0.03777   0.00028  0.20452 
 
P value adjustment method: BH  
 

Looking at the BH corrected tests we find that wearing a Spiderman costume is significantly 
different from wearing a Superman or Ninja Turtle costume but not significantly different from 
wearing a Hulk costume. Wearing a Superman costume is significantly different from wearing 
any of the other costumes. Finally, wearing a Hulk costume is not significantly different from 
wearing a Ninja Turtle costume.  

The post hoc test has shown us which differences between means are significant. However, 
if we want to see the direction of the effects we can look back to the means and error bar 
graph above. Looking at the graph and means, we can conclude that wearing a Superman 
costume resulted in significantly more severe injuries than any of the other costumes 
(probably because these children were jumping off things in an attempt to fly the most ), 
and wearing a Spiderman costume resulted in significantly more severe injuries than wearing 
a Ninja Turtle costume but not significantly more severe injuries than wearing a Hulk 
costume. Wearing a Hulk costume did not result in significantly more severe injuries than 
wearing a Ninja costume.  

 
Calculating the effect size 
The output from the ANOVA above provides us with three measures of variance: the 
between-group effect (SSM), the within-subject effect (MSR) and the total amount of variance 
in the data (SST). We can use these to calculate omega squared (ω2): 

𝜔2=SSM−𝑑𝑓M×MSRSST+𝑀𝑆𝑅
 

 

𝜔2=4180.6−3×167.568537.2+167.56 
=3677.928704.76 

=.42 
𝜔=.65 

 
Interpreting and writing the result 
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The correct way to report the main finding would be: 
 All significant values are reported at p < .05. There was a significant effect of 

superhero costume on severity of injury, F(3, 26) = 8.32, ω2 = .42. Benjamini–
Hochberg tests revealed wearing a Superman costume resulted in significantly more 
severe injuries than any of the other costumes, all ps < .05. Wearing a Spiderman 
costume resulted in significantly more severe injuries than wearing a Ninja Turtle 
costume p < .05 but not significantly more severe injuries than wearing a Hulk 
costume p = .34. Wearing a Hulk costume did not result in significantly more severe 
injuries than wearing a Ninja Turtle costume, p = .20.  

Task 3 

• In Chapter 15 there are some data looking at whether eating soya meals reduces 
your sperm count. Have a look at this section, access the data for that example, but 
analyse them with ANOVA. What’s the difference between what you find and what is 
found in section 15.6.4? Why do you think this difference has arisen? 

          
 
First load in the Soya.dat data: 

 
soyaData = read.delim("Soya.dat", header = TRUE) 

 
Next, set the categorical variable soya to be a factor: 
 
soyaData$Soya<-factor(soyaData$Soya, levels = c(1:4), labels = c("No Soya Meals","1 
Soya Meal Per Week", "4 Soya Meals Per Week", "7 Soya Meals Per Week")) 

 
Let’s have a look at some descriptive statistics by executing: 
 
by(soyaData$Sperm, soyaData$Soya, stat.desc) 

 
soyaData$Soya: No Soya Meals 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    0.3510965   21.0800000   20.7289035   99.7352551  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   3.0954201    4.9867628    1.1368993    2.3795576   25.8508002    5.0843682    1.0195729  
--------------------------------------------------------------------  
soyaData$Soya: 1 Soya Meal Per Week 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    0.3255391   18.4700000   18.1444609   92.1049030  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   2.5950621    4.6052451    1.0448316    2.1868577   21.8334621    4.6726290    1.0146320  
--------------------------------------------------------------------  
soyaData$Soya: 4 Soya Meals Per Week 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    0.4025473   18.2100000   17.8074527   82.2014229  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   2.9428655    4.1100711    0.9860858    2.0639013   19.4473048    4.4099098    1.0729522  
--------------------------------------------------------------------  
soyaData$Soya: 7 Soya Meals Per Week 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    0.3100000    4.1100000    3.8000000   33.0602432  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   1.3325585    1.6530122    0.2479015    0.5188639    1.2291033    1.1086493    0.6706843  
 

From this output, it looks as though as soya intake increases, sperm counts do indeed 
decrease. 

We should next conduct Levene's test: 
 
leveneTest(soyaData$Sperm, soyaData$Soya, center = "median") 
 
Levene's Test for Homogeneity of Variance (center = "median") 
      Df F value  Pr(>F)   
group  3  2.8601 0.04239 * 
      76                   
For these data, it appears that the assumption of homogeneity of variance has been broken, 
because our significance is .04, which is smaller than the criterion of .05. In fact, these data 
also violate the assumption of normality (see Chapter 15 on non-parametric statistics). 
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#Run the one-way ANOVA: 
 
soyaModel<-aov(Sperm~Soya, data = soyaData) 
 
summary(soyaModel) 
 
 
              Df  Sum Sq  Mean Sq  F value   Pr(>F)   
Soya           3  135.13   45.043   2.6356   0.05577 . 
Residuals     76  1298.85  17.090                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’  
 

The main ANOVA summary table shows us that because the observed significance value is 
greater than .05 we can say that there was no significant effect of soya intake on men’s 
sperm count. This is strange because if you read Chapter 15 from where this example came, 
the Kruskal–Wallis test produced a significant result! The reason for this difference is that the 
data violate the assumptions of normality and homogeneity of variance. As I mention in 
Chapter 15, although parametric tests have more power to detect effects when their 
assumptions are met, when their assumptions are violated non-parametric tests have more 
power! This example was arranged to prove this point: because the parametric assumptions 
are violated, the non-parametric tests produced a significant result and the parametric test did 
not because, in these circumstances, the non-parametric test has the greater power! 

 
oneway.test(Sperm~Soya, data = soyaData) 
 

One-way analysis of means (not assuming equal variances) 
 
data:  Sperm and Soya  
F = 6.2844, num df = 3.000, denom df = 34.657, p-value = 0.001607 
 

This output shows Welch’s F; note that the Welch test agrees with the non-parametric test in 
that the significance of F is below the .05 threshold. However, in these circumstances, 
because normality and homogeneity of variance have been violated we’d use a non-
parametric test anyway! 

Task 4 

• Students (and lecturers for that matter) love their mobile phones, which is rather 
worrying given some recent controversy about links between mobile phone use and 
brain tumours. The basic idea is that mobile phones emit microwaves, and so holding 
one next to your brain for large parts of the day is a bit like sticking your brain in a 
microwave oven and hitting the ‘cook until well done’ button. If we wanted to test this 
experimentally, we could get six groups of people and strap a mobile phone to their 
heads (so they can’t remove it). Then, by remote control, we turn the phones on for a 
certain amount of time each day. After 6 months, we measure the size of any tumour 
(in mm3) close to the site of the phone antenna (just behind the ear). The six groups 
experienced 0, 1, 2, 3, 4 or 5 hours per day of phone microwaves for six months. The 
data are in Tumour.dat (from Field & Hole, 2003). 

As always, we first need to load in the data: 
 

tumourData = read.delim("Tumour.dat", header = TRUE) 
 

Next we need to set the categorical variable usage as a factor: 
 

tumourData$usage<-factor(tumourData$usage, levels = c(0:5), labels = c("0 Hours", "1 
Hour", "2 Hours", "3 Hours", "4 Hours", "5 Hours")) 
 

Now let’s plot an error bar graph of these data: 
 

bar <- ggplot(tumourData, aes(usage, tumour)) 
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bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Mobile Phone 
Use (Hours Per Day)", y = "Mean Size of Tumour (MM cubed)") 

 
 

 
 
 
The error bar chart of the mobile phone data shows the mean size of brain tumour in each 
condition, and the funny ‘I’ shapes show the confidence intervals of these means. Note that in 
the control group (0 hours), the mean size of the tumour is virtually zero (we wouldn’t actually 
expect them to have a tumour) and the error bar shows that there was very little variance 
across samples. We’ll see later that this is problematic for the analysis. 

We can request some descriptive statistics: 
 

by(tumourData$tumour, tumourData$usage, stat.desc) 
 
 
tumourData$usage: 0 Hours 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
2.000000e+01 0.000000e+00 0.000000e+00 7.442466e-04 3.711899e-02 3.637475e-02 3.509991e-01  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
1.607072e-02 1.754996e-02 2.711699e-03 5.675651e-03 1.470662e-04 1.212709e-02 6.910037e-01  
--------------------------------------------------------------------  
tumourData$usage: 1 Hour 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
 20.00000000   0.00000000   0.00000000   0.00287482   0.94027839   0.93740357  10.29772157  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
  0.54767640   0.51488608   0.06354728   0.13300598   0.08076513   0.28419207   0.55195136  
--------------------------------------------------------------------  
tumourData$usage: 2 Hours 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    0.4775269    2.3420716    1.8645447   25.2272512  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   1.2400708    1.2613626    0.1100540    0.2303457    0.2422376    0.4921764    0.3901943  
--------------------------------------------------------------------  
tumourData$usage: 3 Hours 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    1.7742355    4.3064064    2.5321709   60.4318812  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   2.9401358    3.0215941    0.1711835    0.3582912    0.5860759    0.7655559    0.2533616  
--------------------------------------------------------------------  
tumourData$usage: 4 Hours 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    3.0383907    6.0488796    3.0104889   97.7559078  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   5.1272139    4.8877954    0.1556873    0.3258572    0.4847705    0.6962546    0.1424476  
--------------------------------------------------------------------  
tumourData$usage: 5 Hours 
     nbr.val     nbr.null       nbr.na          min          max        range          sum  
  20.0000000    0.0000000    0.0000000    2.7027423    6.1398957    3.4371534   94.6118789  
      median         mean      SE.mean CI.mean.0.95          var      std.dev     coef.var  
   4.8654203    4.7305939    0.1747768    0.3658121    0.6109388    0.7816257    0.1652278  

This output shows the means, standard deviations and standard errors of the means for each 
experimental condition. The means should correspond to those plotted in the graph. These 
diagnostics are important for interpretation later on. 
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Next we can conduct Levene’s test: 
leveneTest(tumourData$tumour, tumourData$usage, center = "median") 

 
Levene's Test for Homogeneity of Variance (center = "median") 
       Df F value   Pr(>F)     
group   5  8.3953 8.68e-07 *** 
      114                      
 
For these data, the assumption of homogeneity of variance has been violated, because our 
significance is less than .0001, which is considerably smaller than the criterion of .05. In these 
situations, we have to try to correct the problem and we can either transform the data or 
choose Welch’s F.  

To conduct a one-way ANOVA we can execute the following commands: 
 

tumourModel<-aov(tumour~usage, data = tumourData) 
 
summary(tumourModel) 
 
           Df Sum Sq Mean Sq F value    Pr(>F)     
usage       5 450.66  90.133  269.73 < 2.2e-16 *** 
Residuals 114  38.09   0.334                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
The main ANOVA summary table shows us that because the observed significance value is 
less than .05 we can say that there was a significant effect of mobile phones on the size of 
tumour. However, at this stage we still do not know exactly what the effect of the phones was 
(we don’t know which groups differed).  

We can get the Welch F by executing: 
 
oneway.test(tumour~usage, data = tumourData) 
 

 One-way analysis of means (not assuming equal variances) 
 
data:  tumour and usage  
F = 414.926, num df = 5.00, denom df = 44.39, p-value < 2.2e-16 
 
This output shows the Welch F, which is useful because homogeneity of variance was 
violated. Luckily our conclusions remain the same: both Fs have significance values less than 
.05. 

Because there were no specific hypotheses, we can just carry out post hoc tests: 
 
pairwise.t.test(tumourData$tumour, tumourData$usage, p.adjust.method = "BH") 
 

Pairwise comparisons using t tests with pooled SD  
 
data:  tumourData$tumour and tumourData$usage  
 
        0 Hours 1 Hour  2 Hours 3 Hours 4 Hours 
1 Hour  0.008   -       -       -       -       
2 Hours 6.2e-10 9.5e-05 -       -       -       
3 Hours < 2e-16 < 2e-16 3.1e-16 -       -       
4 Hours < 2e-16 < 2e-16 < 2e-16 < 2e-16 -       
5 Hours < 2e-16 < 2e-16 < 2e-16 1.2e-15 0.392   
 
P value adjustment method: BH  

 
It is clear from the table that each group of participants is compared to all of the remaining 
groups. At the bottom of the table, we can see that group 5 is compared to the groups that 
used their phones 0, 1, 2, 3 and 4 hours a day and reveals a significant difference in all cases 
(all the values in the columns are less than .05) except for the comparison between the 4- 
and 5-hour groups. In the next part of the table, the 4-hour group is compared to all other 
groups. Again all comparisons are significant (all the values in the columns are less than .05). 
In fact, all of the comparisons appear to be highly significant except the comparison between 
the 4- and 5-hour groups, which is non-significant because the value is bigger than .05. 

 
Calculating the effect size 
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The main ANOVA output that we obtained earlier provided us with three measures of 
variance: the between group effect (SSM), the within subject effect (MSR) and the total amount 
of variance in the data (SST). We can use these to calculate omega squared (ω2): 

𝜔2=SSM−𝑑𝑓M×MSRSST+𝑀𝑆𝑅 

𝜔2=450.66−5×0.334488.75+0.334 
=448.99488.416 

=.92 
𝜔=.96 

 

Interpreting and writing the result 
We could report the main finding as: 

• Levene’s test indicated that the assumption of homogeneity of variance had been 
violated, F(5, 114) = 8.40, p < .001. Transforming the data did not rectify this problem 
and so F-tests are reported nevertheless. The results show that using a mobile phone 
significantly affected the size of brain tumour found in participants, F(5, 114) = 
269.73, p < .001, ω2 = .92. The effect size indicated that the effect of phone use on 
tumour size was substantial. 

The next thing that needs to be reported are the post hoc comparisons. It is customary just to 
summarize these tests in very general terms like this: 

•   Benjamini–Hochberg post hoc tests revealed significant differences between all 
groups (p < .001 for all tests) except between 4 and 5 hours (ns). 

 

Task 5 

• Using the Glastonbury data from Chapter 7 (GlastonburyFestivalRegression.dat), 
carry out a one-way ANOVA on the data to see if the change in hygiene (change) is 
significantly different across people with different musical tastes (music). Do a 
contrast to compare each group against ‘No Affiliation’. Compare the results to those 
described in section 7.11. 

  
Remember to load in the data: 
 

festivalData<-read.delim("GlastonburyFestivalRegression.dat", header = TRUE) 

head(festivalData) 

 
ticknumb                     music day1 day2 day3 change 
1     2111               Metaller 2.65 1.35 1.61  -1.04 
2     2229                 Crusty 0.97 1.41 0.29  -0.68 
3     2338 No Musical Affiliation 0.84   NA   NA     NA 
4     2384                 Crusty 3.03   NA   NA     NA 
5     2401 No Musical Affiliation 0.88 0.08   NA     NA 
6     2405                 Crusty 0.85   NA   NA     NA 
 

Looking at the section of the data above, we can see that we don’t need to make the 
categorical variable music a factor because it is already a factor. Remember that R will read 
in levels of a factor in alphabetical order, therefore, in this example: 

1 = Crusty 
2 = Indie Kid 
3 = metaller 
4 = No Musical Affiliation  
 
if we wanted to check the order of the levels we could execute: 
 

Professor Andy Field� 18/9/13 13:48
Comment: Do this 
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levels(festivalData$music) 
[1]    "Crusty"   "Indie Kid"   "Metaller"    "No Musical Affiliation" 
 
From the output above we now know that the variable music has 4 levels and they are (in 
this order) Crusty, Indie Kid, Metaller, No Musical Affiliation. This will come in handy for 
interpreting the contrast later. 

 
Conduct Levene’s test: 
 
leveneTest(festivalData$change, festivalData$music, center = "median") 

 
 
Levene's Test for Homogeneity of Variance (center = "median") 
       Df F value Pr(>F) 
group   3  0.7673 0.5145 
      119                
 
Levene’s test is non-significant, showing that variances were roughly equal, F(3, 119) = 0.77, 
p > .05, across crusties, metallers, indie kids and people with no affiliation. 

Next, we can run the one-way ANOVA by executing: 
 
festivalModel<-aov(change~music, data = festivalData) 
 
summary(festivalModel) 
 

                    Df   Sum Sq   Mean Sq  F value  Pr(>F)   
music          3   4.646   1.54882   3.2704   0.02369 * 
Residuals          119  56.358   0.47359                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
687 observations deleted due to missingness 
 
Looking at the ANOVA output above, we could say that the change in hygiene scores was 
significantly different across the different musical groups, F(3, 119) = 3.27, p < .05. Compare 
the values in this output to the one in Chapter 7, section 7.12.2, in which we analysed these 
data as a regression: 

 
Call: 
lm(formula = change ~ crusty + indie.kid + metaller, data = gfr) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.82569 -0.50489  0.05593  0.42430  1.59431  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)   -0.55431    0.09036  -6.134 1.15e-08 *** 
crustyTRUE    -0.41152    0.16703  -2.464   0.0152 *   
indie.kidTRUE -0.40998    0.20492  -2.001   0.0477 *   
metallerTRUE   0.02838    0.16033   0.177   0.8598     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.6882 on 119 degrees of freedom 
  (687 observations deleted due to missingness) 
Multiple R-squared: 0.07617,    Adjusted R-squared: 0.05288  
F-statistic:  3.27 on 3 and 119 DF,  p-value: 0.02369  

 
If you look at the values that I have highlighted, you will see that they are exactly the same! 
This should, I hope, re-emphasize to you that regression and ANOVA are the same analytic 
system! 

 
The question also asked us to do a contrast to compare each group against ‘No Affiliation’.  
I am going to use the standard contrast contr.SAS() as in this contrast, each category is 

compared to the last category, which is the ‘No Affiliation’ category in the current example. 
To run this contrast we would execute: 

contrasts(festivalData$music)<-contr.SAS(4) 
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festivalContrast<-aov(change~music, data = festivalData) 

 

summary.lm(festivalContrast) 

 
Call: 
aov(formula = change ~ music, data = festivalData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.82569 -0.50489  0.05593  0.42430  1.59431  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.55431    0.09036  -6.134 1.15e-08 *** 
music1      -0.41152    0.16703  -2.464   0.0152 *   
music2      -0.40998    0.20492  -2.001   0.0477 *   
music3       0.02838    0.16033   0.177   0.8598     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.6882 on 119 degrees of freedom 
  (687 observations deleted due to missingness) 
Multiple R-squared: 0.07617, Adjusted R-squared: 0.05288  
F-statistic:  3.27 on 3 and 119 DF,  p-value: 0.02369  
 
 
The output above shows the results of the contrasts comparing No Music Affiliation with each 
of the other levels of the variable music using contr.SAS() and you might notice that it is the 
same as the output from Chapter 7, Section 7.12.2 above. The first level of the music 
variable is Crusty, therefore music1 represents the contrast comparing people with no music 
affiliation with crusties. The beta value represents the difference in the change in hygiene 
scores for a crusty, relative to someone with no music affiliation. The t-test is significant (p = 
.015), and the beta value has a negative value (−0.41), so we could say that the change in 
hygiene scores goes down as a person changes from having no music affiliation to being a 
crusty. Bear in mind that a decrease in hygiene scores represents greater change (you’re 
becoming smellier) so what this actually means is that hygiene decreased significantly more 
in crusties compared to those with no music affiliation.    

Music2 represents the contrast comparing indie kids to those with no music affiliation. The 
beta value represents the difference in the change in hygiene scores for an indie kid, relative 
to someone with no music affiliation. The t-test is again significant (p = .048), and the beta 
value is also a negative value (−0.41) so, as with the first contrast, we could say that the 
change in hygiene scores goes down as a person changes from having no music affiliation to 
being an indie kid. Bear in mind that a decrease in hygiene scores represents more change 
(you’re becoming smellier) so what this actually means is that hygiene decreased significantly 
more in indie kids compared to those with no music affiliation. 

The final contrast, music3 represents the contrast comparing metallers to those with no 
music affiliation. The beta value represents the difference in the change in hygiene scores for 
a metaller, relative to someone with no music affiliation This time the t-test is non significant 
(p = .86) and the beta value is a positive value (0.03). We could conclude that the change in 
hygiene scores is similar if a person changes from having no music affiliation to being a 
metaller: the change in hygiene scores is not predicted by whether someone is a metaller 
compared to if they have no music affiliation.  

So, overall this analysis has shown that compared to having no music affiliation, crusties 
and indie kids get significantly smellier across the three days of the music festival, but 
metallers don’t.  

 

Task 6 

• Labcoat Leni's Real Research 15.2 describes an experiment (Çetinkaya & Domjan, 
2006) on quails with fetishes for terrycloth objects (really, it does). In this example, 
you are asked to analyse two of the variables that they measured with a Kruskal–
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Wallis test. However, there were two other outcome variables (time spent near the 
terrycloth object and copulatory efficiency). These data can be analysed with one-
way ANOVA. Read Labcoat Leni's Real Research 15.2 to get the full story, then carry 
out two one-way ANOVAs and Bonferroni post hoc tests on the aforementioned 
outcome variables.   

Load the data into R: 
 
quailData<-read.delim("Cetinkaya & Domjan.dat", header = TRUE) 

 
Set the categorical variable Groups to be a factor: 

 
quailData$Groups<-factor(quailData$Groups, levels = c(1:3), labels = 
c("Fetishistics", "NonFetishistics", "Control")) 
 

Let’s begin by drawing some error bar charts. To create the first error bar chart you could 
execute: 

 
bar <- ggplot(quailData, aes(Groups, Duration)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Group", y 
= "Mean Time Spent Near Terrycloth Object") 
 

To create the second error bar chart you could execute: 
 

bar <- ggplot(quailData, aes(Groups, Efficiency)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Group", y 
= "Mean Copulatory Efficiancy") 

 
 

  
For the first ANOVA we are looking at whether the group (fetishistic, non-fetishistic or control 

group) had a significant effect on the time spent near the terrycloth object.  
First we need to conduct Levene’s tests by executing: 

 
leveneTest(quailData$Duration, quailData$Groups, center = "median") 

 
Levene's Test for Homogeneity of Variance (center = "median") 
      Df F value Pr(>F) 
group  2  1.6938 0.1931 
      56 
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This tells us that the homogeneity of variance assumption is met. Therefore, we can use the 
normal Fs and Bonferroni post hoc tests (which is what the authors of this paper reported). 

To conduct the one-way ANOVA we can execute: 
 

quailModel.1<-aov(Duration~Groups, data = quailData) 
 
summary(quailModel.1) 

 
            Df   Sum Sq  Mean Sq  F value    Pr(>F)     
Groups      2    9880.6  4940.3   91.38     < 2.2e-16 *** 
Residuals   56   3027.5  54.1                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
The outputs tell us that the group (fetishistic, non-fetishistic or control group) had a significant 
effect on the time spent near the terrycloth object. To find out exactly what’s going on we can 
look at some post hoc tests. You were asked to do a Bonferroni post hoc test. To do so, 
execute the following command: 
 
 
pairwise.t.test(quailData$Duration, quailData$Groups, p.adjust.method = "bonferroni") 

 
Pairwise comparisons using t tests with pooled SD  
 
data:  quailData$Duration and quailData$Groups  
 
                Fetishistics NonFetishistics 
NonFetishistics 0.00045      -               
Control         < 2e-16      1.7e-10         
 
P value adjustment method: bonferroni  
 
If we want to get confidence intervals of the difference between group means, we can do a 
Tukey test by executing: 
 
postHocs.1<-glht(quailModel.1, linfct = mcp(Groups = "Tukey")) 

 
summary(postHocs.1) 

 
Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = Duration ~ Groups, data = quailData) 
 
Linear Hypotheses: 
                                    Estimate Std. Error t value 
NonFetishistics - Fetishistics == 0  -10.588      2.605  -4.065 
Control - Fetishistics == 0          -29.736      2.277 -13.062 
Control - NonFetishistics == 0       -19.148      2.368  -8.087 
                                    Pr(>|t|)     
NonFetishistics - Fetishistics == 0 0.000458 *** 
Control - Fetishistics == 0          < 1e-04 *** 
Control - NonFetishistics == 0       < 1e-04 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- single-step method) 
 
confint(postHocs.1) 

 
Simultaneous Confidence Intervals 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = Duration ~ Groups, data = quailData) 
 
Quantile = 2.4053 
95% family-wise confidence level 
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Linear Hypotheses: 
                                    Estimate   lwr      upr      
NonFetishistics - Fetishistics == 0 -10.5882 -16.8532  -4.3233 
Control - Fetishistics == 0         -29.7364 -35.2120 -24.2608 
Control - NonFetishistics == 0      -19.1481 -24.8434 -13.4529 
 

We then need to conduct another one-way ANOVA to investigate whether the group 
(fetishistic, non-fetishistic or control group) had a significant effect on copulatory efficiency. To 
do this, we follow the same procedure as before. 

First, conduct a Levene’s test: 
 
leveneTest(quailData$Efficiency, quailData$Groups, center = "median") 

 
Levene's Test for Homogeneity of Variance (center = "median") 
      Df F value Pr(>F) 
group  2  1.4451 0.2444 
      56   
 
This tells us that the homogeneity of variance assumption is met. Therefore, we can use the 
normal Fs and Bonferroni post hoc tests (which is what the authors of this paper reported). 

Now conduct the one-way ANOVA: 
 
quailModel.2<-aov(Efficiency~Groups, data = quailData) 
 
summary(quailModel.2) 
  

             Df  Sum Sq   Mean Sq  F value   Pr(>F)    
Groups       2   427.56   213.78   6.0373   0.004224 ** 
Residuals   56  1982.97   35.41                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
This output tells us that the group (fetishistic, non-fetishistic or control group) had a significant 
effect on copulatory efficiency. To find out exactly what’s going on we can look at some post 
hoc tests. You were asked to do a Bonferroni post hoc test for each ANOVA. To do so, 
execute the following command: 

 
pairwise.t.test(quailData$Efficiency, quailData$Groups, p.adjust.method = 
"bonferroni") 

 
Pairwise comparisons using t tests with pooled SD  
 
data:  quailData$Efficiency and quailData$Groups  
 
                Fetishistics NonFetishistics 
NonFetishistics 0.0081       -               
Control         1.0000       0.0106          
 
P value adjustment method: bonferroni  

 
Again, if we want to get confidence intervals of the difference between group means we can 
do a Tukey test by executing: 
 
postHocs.2<-glht(quailModel.2, linfct = mcp(Groups = "Tukey")) 

 
summary(postHocs.2) 

 
Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = Efficiency ~ Groups, data = quailData) 
 
Linear Hypotheses: 
                                    Estimate Std. Error t value 
NonFetishistics - Fetishistics == 0   6.6146     2.1080   3.138 
Control - Fetishistics == 0           0.7794     1.8424   0.423 
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Control - NonFetishistics == 0       -5.8353     1.9163  -3.045 
                                    Pr(>|t|)    
NonFetishistics - Fetishistics == 0  0.00748 ** 
Control - Fetishistics == 0          0.90592    
Control - NonFetishistics == 0       0.00969 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- single-step method) 

 
confint(postHocs.2) 
Simultaneous Confidence Intervals 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = Efficiency ~ Groups, data = quailData) 
 
Quantile = 2.4051 
95% family-wise confidence level 
  
 
Linear Hypotheses: 
                                    Estimate    lwr      upr      
NonFetishistics - Fetishistics == 0   6.6146   1.5446  11.6846 
Control - Fetishistics == 0           0.7794  -3.6518   5.2106 
Control - NonFetishistics == 0       -5.8353 -10.4442  -1.2263 
 
 

The authors reported as follows (pp. 429–430): ‘A one-way ANOVA indicated significant 
group differences, F(2, 56) = 91.38, p < .05, 𝜂2 = 0.76. Subsequent pairwise comparisons 
(with the Bonferroni correction) revealed that fetishistic male quail stayed near the CS [the 
terrycloth object] longer than both the nonfetishistic male quail (mean difference = 10.59 s; 
95% CI = 4.16, 17.02; p < .05) and the control male quail (mean difference = 29.74 s; 95% CI 
= 24.12, 35.35; p < .05). In addition, the nonfetishistic male quail spent more time near the CS 
than did the control male quail (mean difference = 19.15 s; 95% CI = 13.30, 24.99; p < .05).’ 

Look at the graph, the ANOVA output and the post hoc tests to see from where the values 
that they report come. As you will see, the ANOVA values and post hoc p-values match those 
reported in the paper. However, the mean differences and their confidence intervals are 
slightly different. This is because we used a different method than that used in the paper. The 
author of the paper used Bonferroni corrected ps, whereas we have used Tukey. This is 
because the author of the paper used a different statistical package to analyse the data. 

For the copulatory efficiency outcome the authors reported as follows (p. 430): ‘A one-way 
ANOVA yielded a significant main effect of groups, F(2, 56) = 6.04, p < .05, 𝜂2 = 0.18. Paired 
comparisons (with the Bonferroni correction) indicated that the nonfetishistic male quail 
copulated with the live female quail … more efficiently than both the fetishistic male quail 
(mean difference = 6.61; 95% CI = 1.41, 11.82; p < .05) and the control male quail (mean 
difference = 5.83; 95% CI = 1.11, 10.56; p < .05). The difference between the efficiency 
scores of the fetishistic and the control male quail was not significant (mean difference = 0.78; 
95% CI = –5.33, 3.77; p > .05).’ 

These results show that male quails do show fetishistic behaviour (the time spent with the 
terrycloth) and that this affects their copulatory efficiency (they are less efficient than those 
that don’t develop a fetish, but it’s worth remembering that they are no worse than quails that 
had no sexual conditioning – the controls). If you look at Labcoat Leni’s Box 15.2 then you’ll 
also see that this fetishistic behaviour may have evolved because the quails with fetishistic 
behaviour manage to fertilize a greater percentage of eggs (so their genes are passed on!). 

 


